Abstract

Small clusters of water (H2O)n, n = 3-8, are studied using a semiempirical valence bond approach to investigate the bonding energy contribution and hydrogen-bonding structure in the most stable conformation. The energy contribution was decomposed into electron pair-pair interactions and valence-bond energy for each water monomer. Our study shows that there is significant bonding difference between small clusters (n [Formula: see text] 5) of water and larger clusters (n > 5). In the larger clusters, there are structures containing tetravalent oxygen centers, which is impossible in the small clusters. The contribution to the binding energy from each H-bond varies from -4.7 kcal/mol to -7.3 kcal/mol in the water clusters considered here. The contribution of -5.9 kcal/mol per H-bond in the cubic octamer is comparable to the experimental value (-6.7 kcal/mol) of the binding energy in ice.Keywords: semi-empirical, valence bond, hydrogen bonding, water clusters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call