Abstract

SRAM cell read stability and write-ability are major concerns in nanometer CMOS technologies, due to the progressive increase in intra-die variability and V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dd</sub> scaling. This paper analyzes the read stability N-curve metrics and compares them with the commonly used static noise margin (SNM) metric defined by Seevinck. Additionally, new write-ability metrics derived from the same N-curve are introduced and compared with the traditional write-trip point definition. Analytical models of all these metrics are developed. It is demonstrated that the new metrics provide additional information in terms of current, which allows designing a more robust and stable cell. By taking into account this current information, V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dd</sub> scaling is no longer a limiting factor for the read stability of the cell. Finally, these metrics are used to investigate the impact of the intra-die variability on the stability of the cell by using a statistically-aware circuit optimization approach and the results are compared with the worst-case or corner-based design

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.