Abstract

This paper presents the work analysis of the thermal-hydraulic parameters behavior in the RBMK-1500 reactor cavity (RC) and other connected volumes in the case of fuel channels ruptures. The analysis is performed with CONTAIN code using the models of accident localization system (ALS) and reactor cavity venting system (RCVS). The RCVS capacity is assessed and expressed as a number of ruptured fuel channels at which the integrity of RC is maintained. The uncertainty analysis of pressure behavior in RC during multiple fuel channel rupture was performed. The initial and boundary conditions and the code models were selected and their influence on the results is estimated. Calculation of coolant mass and energy release to the reactor cavity in case of fuel channels rupture performed using the main circulation circuit model of Ignalina NPP, which was developed by employing state-of-the-art code RELAP5/MOD3.2 [Fletcher et al., RELAP5/MOD3 code manual user’s guidelines, Idaho National Engineering Lab., NUREG/CR-5535 (1992)]. These results were applied further as the initial data for the analysis of the thermal-hydraulic parameters behavior in the affected compartments employing CONTAIN code.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call