Abstract

This paper deals with the modeling of RBMK-1500 specific transients taking place at Ignalina NPP: measurements of void and fast power reactivity coefficients, as well as change of graphite cooling conditions transient. The simulation of these transients was performed using RELAP5-3D code model of RBMK-1500 reactor. At the Ignalina NPP void and fast power reactivity coefficients are measured on a regular basis and based on the obtained experimental results the actual values of these reactivity coefficients are determined. Graphite temperature reactivity coefficient at the plant is determined by changing graphite cooling conditions in the reactor cavity. This type of transient is unique and important from the point of view of model validation for the gap between fuel channel and the graphite bricks. The measurement results, obtained during this transient, enabled to determine the thermal conductivity coefficient for this gap and to validate the graphite temperature reactivity feedback model. The performed validation of RELAP5-3D model of Ignalina NPP RBMK-1500 reactor allowed to improve the model, which in the future would be used for the safety substantiation calculations of RBMK-1500 reactors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call