Abstract

Ignalina NPP is equipped with channel-type boiling-water graphite-moderated reactor RBMK-1500. Results of the level-1 probabilistic safety assessment of the Ignalina NPP have shown that in topography of the risk, the transients with failure of long-term core cooling other than LOCA are the main contributors to the core damage frequency. The total loss of off-site power with a failure to start any diesel generator, that is station blackout, is the event which could lead to the loss of long-term core cooling. Such accident could lead to multiple ruptures of fuel channels with severe consequences and should be analyzed in order to estimate the timing of the key events and the possibilities for accident management. This paper presents the results of the analysis of station blackout at Ignalina NPP. Analysis was performed using thermal-hydraulic state-of-the-art RELAP5/MOD3.2 code. The response of reactor cooling system and the processes in the reactor cavity and its venting system in case of a few fuel-channel ruptures due to overheating were demonstrated. The possible measures for prevention of the development of this beyond design basis accident (BDBA) to a severe accident are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.