Abstract
The reactivity of bis(organoamino)phosphanes PhP(NHR)(NHR′) (1a–1c, in which R, R′ = tBu for 1a; tBu, Dip for 1b; and Ph for 1c; Dip = C6H3–2,6-iPr2) and tBuP(NHDip)2 (1d) with Me3Al was investigated. The reaction of 1a or 1b gave in the first step compounds [PhP(NHR)(NR′)]AlMe2 (in which R, R′ = tBu for 2a; tBu, Dip for 2b) as a result of methane elimination that upon heating underwent nitrogen-to-phosphorus hydrogen-atom migration under the formation of diiminophosphinates [Ph(H)P(NR)(NR′)]AlMe2 (in which R, R′ = tBu for 3a; tBu, Dip for 3b). In contrast, phosphane 1c showed a reversed reaction sequence that yielded an intermediate [Ph(H)P(NHPh)(=NPh)]AlMe3 (2c) first as a consequence of hydrogen-atom migration followed by the methane elimination and formation of diiminophosphinate [Ph(H)P(NPh)2]AlMe2 (3c). The partial deprotonation of 1a,b,d using one molar equivalent of nBuLi followed by the treatment with AlCl3 smoothly produced compounds [Ph(H)P(NR)(NR′)]AlCl2 (in which R, R′ = tBu for 4a; tBu, Dip for 4b) and [tBu(H)P(NDip)2]AlCl2 (4d), in which the hydrogen atom was again shifted from the nitrogen to the phosphorus atom. All studied compounds were characterized with the help of elemental analysis; 1H, 13C{1H}, 31P, and 31P{1H} NMR spectra; and in the case of 3c, 4a, 4b, and 4d by using single-crystal X-ray diffraction analysis. The phenomenon of the hydrogen-atom migration was subjected also to a theoretical survey with particular emphasis on the influence of the phosphane used.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have