Abstract

The Ca-based sorbent cyclic calcination/carbonation reaction (CCCR) is a high-efficiency technique for capturing CO2 from combustion processes. The CO2 capture ability of CaO modified with sodium humate (HA-Na) (HA-Na/CaO) in long-term calcination/carbonation cycles was investigated. The enhancement mechanism of HA-Na on CCCR was proposed and demonstrated. The effects of carbonation temperature, reaction duration, and the addition amount of HA-Na on the carbonation rate of the CaO adsorbent were also studied. HA-Na/CaO is allowed to react 20 min at the optimum conditions for calcination (920 °C, 100% N2) and for carbonation (700 °C, 15% CO2, 85% N2), respectively. HA-Na plays a key role in the CCCR process, and the carbonation conversion rate is lifted obviously. The maximum conversion rate of HA-Na/CaO is 23% higher than that of CaO in the first cycle. After 20 cycles, the conversion rate of HA-Na/CaO is still 0.28, while that of CaO is only 0.15. The carbonation conversion rate for HA-Na/CaO is improved by 86% compared to CaO. In addition, the characteristics of calcined sorbents are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.