Abstract

Six-dimensional quantum dynamical calculations are reported for the dissociative chemisorption of (v=0, 1, j=0) H(2) on Cu(100), and for rovibrationally inelastic scattering of (v=1, j=1) H(2) from Cu(100). The dynamics results were obtained using a new potential-energy surface (PES5), which was based on density-functional calculations using a slab representation of the adsorbate-substrate system and a generalized gradient approximation to the exchange-correlation energy. A very accurate method (the corrugation reducing procedure) was used to represent the density-functional theory data in a global potential-energy surface. With the new, more accurately fitted PES5, the agreement between the dynamics results and experimental results for reaction and rovibrationally elastic scattering is not as good as was obtained with a previous potential-energy surface (PES4), which was based on a subset of the density-functional theory data not yet including the results for the low-symmetry Cu sites. Preliminary density-functional theory results suggest that the agreement between theory and experiment will improve over that obtained with PES5 if the density-functional calculations are repeated using a larger basis set and using more copper layers than employed in PES4 and PES5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.