Abstract

Abstract This paper presents a modular approach to motion planning with provable stability guarantees for robots that move through changing environments via periodic locomotion behaviors. We focus on dynamic walkers as a paradigm for such systems, although the tools developed in this paper can be used to support general compositional approaches to robot motion planning with dynamic movement primitives (DMPs). By formulating the planning process as a switching system with multiple equilibria (SSME), we prove that the system's evolution remains within explicitly characterized trapping regions in the state space under suitable constraints on the frequency of switching among the DMPs. These conditions encapsulate the low-level stability limitations in a form that can be easily communicated to the planner. Furthermore, we show how the available primitives can be safely composed online in a receding horizon manner to enable the robot to react to moving obstacles. The proposed framework can be applied in a wide class of 3D bipedal walking models, and offers a modular approach for integrating readily available low-level locomotion control and high-level planning methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call