Abstract

In this paper we present an initial approach towards reversible robot movement primitives. Our approach is a modification of Dynamic Movement Primitives (DMPs), a widely used framework for robot learning from demonstration. DMPs are based on dynamical systems to guarantee properties such as convergence to a goal state, robustness to perturbation, and the ability to generalize to other goal states. Yet a main limitation of their original formulation is that they do not allow for movements to be reversed. Thus, to execute the same task forwards and backwards would mean to learn two separate primitives. We propose to replace the transformation system in DMPs with the Logistic Differential Equation (LDE), a known time-reversible non-linear system. Similarly to the original DMP formulation, our system's temporal evolution is controlled by a phase system, which in our case is derived from the LDE to guarantee reversibility. We evaluate our approach experimentally with demonstration data from a real robot assembly task, and show comparable properties to those of the original DMP system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call