Abstract

The reaction mechanism and energetics for the conversion of methanol to formaldehyde by an iron−oxo species, FeO+, is investigated. Three competitive reaction pathways for the catalytic reaction are analyzed from DFT computations at the B3LYP level of theory. In Path 1, the H atom of the OH group of methanol is first abstracted by the oxo group of FeO+ via a four-centered transition state (TS1-1) leading to the intermediate complex HO−Fe+−OCH3, and after that one of the H atoms of the OCH3 group is shifted to the OH ligand via a five-centered transition state (TS1-2) to form the final product complex H2O−Fe+−OCH2. In Path 2, one of the H atoms of the CH3 group of methanol is abstracted by the oxo group via a five-centered transition state (TS2-1) leading to the intermediate complex HO−Fe+−OHCH2, and then the H atom of the OHCH2 group is shifted to the OH ligand via a four-centered transition state (TS2-2) to give the product complex. Unlike Paths 1 and 2, which involve a hydrogen shift, the first step in ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call