Abstract

The reaction between the Ni(+) cation and H(2)S is studied by considering both the doublet ground state and the lowest-lying quartet state. For the doublet state the reaction is endothermic, whereas it is exothermic for the quartet state. Both CCSD(T)//B3LYP and B3LYP levels of theory, combined with the triple-zeta quality TZVP++G(3df,2p), predict that there are three spin crossings along the characterized reaction path. The first one is located after the first transition state, and the second and third ones before and after the second transition state. On the quartet potential energy surface, both transition states are close in energy to the reactants, while on the doublet surface both lie quite higher in energy. The doublet and quartet states of the HNiSH(+) four-membered intermediate lie very close in energy and their corresponding electronic configurations are connected by a single electron flip. This suggests that the -SH ligand would not prevent a facile intersystem crossing at this intermediate molecule, in contrast to the larger protection provided by the more electronegative -OH ligand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.