Abstract
The reaction between CO and HO2 plays a significant role in syngas combustion. In this work, the catalytic effect of single-molecule water on this reaction is theoretically investigated at the CCSD(T)/aug-cc-pV(D,T,Q)Z and CCSD(T)-F12a/jun-cc-pVTZ levels in combination with the M062X/aug-cc-pVTZ level. Firstly, the potential energy surface (PES) of CO + HO2 (water-free) is revisited. The major products CO2 + OH are formed via a cis- or a trans-transition state (TS) channel and the formation of HCO + O2 is minor. In the presence of water, the title reaction has three different pre-reactive complexes (i.e., RC2: COHO2 + H2O, RC3: COH2O + HO2, and RC4: HO2H2O + CO), depending on the initial hydrogen bond formation. Compared to the water-free process, the reaction barriers of the water-assisted process are reduced considerably, due to more stable cyclic TSs and complexes. The rate constants for the bimolecular reaction pathways CO + HO2, RC2, RC3, and RC4 are further calculated using conventional transition state theory (TST) with Eckart asymmetric tunneling correction. For reaction CO + HO2, our calculations are in good agreement with the literature. In addition, the effective rate constants for the water-assisted process decrease by 1-2 orders of magnitude compared to the water-free one at a temperature below 600 K. In particular, the effective rate constants for the water-assisted and water-free processes are 1.55 × 10-28 and 3.86 × 10-26 cm3 molecule-1 s-1 at 300 K, respectively. This implies that the contribution of a single molecule water-assisted process is small and cannot accelerate the title reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.