Abstract

Vinyl acetate [VA (CH3COOC2H3)] is an important unsaturated and oxygenated volatile organic compound responsible for atmospheric pollution. In this work, possible reaction mechanisms for the degradation of OH-initiated atmospheric oxidation of VA are investigated. The potential energy surfaces (PESs) for the reaction of OH radical with VA in the presence of O2 and NO have been studied using the M06-2X/6-311++G(d,p) method. The initial addition reactions of more and less substituted ethylenic C-atoms of VA are treated separately, followed by a conventional transition state theory (TST) calculation for reaction rates. The direct H-abstraction mechanism and kinetics have also been studied. The initial OH addition occurs through a prereactive complex, and the calculated rate constants in the temperature range 250-350 K for both the addition reactions are found to have negative temperature dependence. The calculation indicates that the reaction proceeds predominantly via the addition of OH radical to the double bond rather than the direct abstraction of H-atoms in VA. IM1 [CH3C(O)O(•)CHCH2OH] and IM2 [CH3C(O)OCH(OH)(•)CH2], the OH adduct complexes formed initially, react with ubiquitous O2 followed by NO before their rearrangement. The formation of the prereactive complex plays an important role in reaction mechanism and kinetics. The calculated rate constant, k298K = 1.61 × 10(-11) cm(3) molecule(-1) s(-1), is well harmonized with the previous experimental data, k298K = (2.48 ± 0.61) × 10(-11) cm(3) molecule(-1) s(-1) (Blanco et al.) and k298K = (2.3 ± 0.3) × 10(-11) cm(3) molecule(-1) s(-1) (Picquet-Varrult et al.). Additionally, consistent and reliable enthalpies of formation at 298.15 K (ΔfH°298.15) have been computed for all the species involved in the title reaction using the composite CBS-QB3 method. The theoretical results confirm that the major products are formic acetic anhydride, acetic acid, and formaldehyde in the OH-initiated oxidation of VA in the presence of O2 and NO, which are in excellent agreement with the experimental findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.