Abstract

We present mass transport properties of C60 fullerene in five aromatic solvents, methylnaphthalene, toluene and three xylene isomers. Optical beam deflection and thermogravitational column techniques were used to determine molecular diffusion, thermodiffusion and Soret coefficients. All thermo-optical properties necessary to determine the abovementioned coefficients are also given at a mean working temperature of 298.15 K and an atmospheric pressure of 0.101 MPa. The magnitude of all transport properties is governed by the molecular weight ratio. In the particular case of the isomers, experiments revealed that movement under isothermal conditions (described by molecular diffusion) is dominated by density, while under non-isothermal conditions viscous forces affect the displacement (thermodiffusion depends on the dynamic viscosity). In the case of the Soret coefficients, as a combination of both, density is the dominant parameter and also the moment of inertia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call