Abstract

The mechanism of the C(6)H(5) + C(2)H(2) reaction has been investigated by various quantum chemical methods. Electrophilic addition to the CC triple bond is found to be the only important mode of phenyl radical attack on acetylene. The initially formed chemically activated C(6)H(5)C(2)H(2) adducts may follow several isomerization pathways in competition with collisional stabilization and H-elimination. Thermochemistry of various decomposition and isomerization channels is evaluated by the G2M method. For key intermediates, the following standard enthalpies of formation have been deduced from isodesmic reactions: 94.2 +/- 2.0 kcal/mol (C(6)H(5)CHCH), 86.4 +/- 2.0 kcal/mol (C(6)H(5)CCH(2)), and 95.5 +/- 1.8 kcal/ mol (o-C(6)H(4)C(2)H(3)). The accuracy of theoretical predictions was examined through extensive comparisons with available experimental and theoretical data. The kinetics and product branching of the C(6)H(5) + C(2)H(2) reaction have been evaluated by weak collision master equation/Rice-Ramsperger-Kassel-Marcus (RRKM) analysis of the truncated kinetic model including only kinetically important transformations of the isomeric C(8)H(7) radicals. Available experimental kinetic data can be quantitatively reproduced by calculation with a minor adjustment of the C(6)H(5) addition barrier from 3.7 to 4.1 kcal/mol. Our predicted total rate constant, k(R1) = (1.29 x 10(10))T(0.834) exp(-2320/T) cm(3) mol(-)(1) s(-)(1), is weakly dependent on P and corresponds to the phenylation process under combustion conditions (T > 1000 K).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.