Abstract

Parallelism and data reuse are the most critical issues for the design of hardware acceleration in a deep learning processor. Besides, abundant on-chip memories and precise data management are intrinsic design requirements because most of deep learning algorithms are data-driven and memory-bound. In this paper, we propose a compiler-architecture co-design scheme targeting a reconfigurable and algorithm-oriented array processor, named ReAAP. Given specific deep neural networks, the proposed co-design scheme is effective to perform parallelism and data reuse optimization on compute-intensive layers for guiding reconfigurable computing in hardware. Especially, the systemic optimization is performed in our proposed domain-specific compiler to deal with the intrinsic tensions between parallelism and data locality, for the purpose of automatically mapping diverse layer-level workloads onto our proposed reconfigurable array architecture. In this architecture, abundant on-chip memories are software-controlled and its massive data access is precisely handled by compiler-generated instructions. In our experiments, the ReAAP is implemented on an embedded FPGA platform. Experimental results demonstrate that our proposed co-design scheme is effective to integrate software flexibility with hardware parallelism for accelerating diverse deep learning workloads. As a whole system, ReAAP achieves a consistently high utilization of hardware resource for accelerating all the diverse compute-intensive layers in ResNet, MobileNet, and BERT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.