Abstract

Deep learning (DL) accelerators suffer from a new security problem, i.e., being vulnerable to physical access based attacks. An adversary can easily obtain the entire neural network (NN) model by physically snooping the memory bus that connects the accelerator chip with DRAM memory. Therefore, memory encryption becomes important for DL accelerators to improve their security. Nevertheless, we observe that traditional memory encryption techniques that have been efficiently used in CPU systems cause significant performance degradation when directly used in DL accelerators, due to the big bandwidth gap between the memory bus and the encryption engine. To address this problem, our paper proposes SEAL, a Secure and Efficient Accelerator scheme for deep Learning to enhance the performance of encrypted DL accelerators by improving the data access bandwidth. Specifically, SEAL leverages a criticality-aware smart encryption scheme that identifies partial data having no impact on the security of NN models and allows them to bypass the encryption engine, thus reducing the amount of data to be encrypted without affecting security. Extensive experimental results demonstrate that, compared with existing memory encryption techniques, SEAL achieves 1.34 – 1.4× overall performance improvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.