Abstract

Salinity–alkalinity stress is a limiting factor in tomato production in the world. Plants perceive salinity–alkalinity stress by activating signaling pathways to increase plant tolerance (Xu et al., 2020). Here, we investigated whether spermine (Spm) induces respiratory burst oxidase homolog 1 (RBOH1) and hydrogen peroxide (H2O2) signaling in response to salinity–alkalinity stress in tomato. The results showed that exogenous Spm induced the expression of RBOH1 and the accumulation of H2O2 under normal condition. Accordingly, we tested the function of H2O2 signal in tomato seedlings and found that exogenous H2O2 increased the expression levels of Cu/Zn-superoxide dismutase (Cu/Zn-SOD), catalase 1 (CAT1), cytosolic ascorbate peroxidase (cAPX), and glutathione reductase 1 (GR1) and the activities of SOD (EC 1.15.1.1), CAT (EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11), and GR (EC 1.6.4.2) in tomato seedlings under salinity–alkalinity stress. DMTU increased the malondialdehyde (MDA) content and relative electrical conductivity, and the relative water content (RWC), and accelerated leaf yellowing in tomato seedlings under salinity–alkalinity stress, even though we sprayed Spm on tomato leaves. We also found that RBOH1 silencing decreased the expression levels of Cu/Zn-SOD, CAT1, cAPX, and GR1 and the activities of SOD, CAT, APX, and GR when tomato seedlings were under salinity–alkalinity stress. Exogenous Spm did not increase RWC and decrease MDA content in RBOH1 silencing tomato seedlings under salinity–alkalinity stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.