Abstract
Locating defects in an underground cable connection can be based on the propagation of transient signals emerging from faults or weaknesses in the insulation. The accuracy depends on the precise knowledge of the propagation characteristics of high-frequency components in the signals. These characteristics are analysed for multi-conductor cables in case of non-perfect rotational symmetry. Deviations can arise from the positioning of the conductors within the cable cross section or from an inhomogeneous distribution of dielectric materials. It is investigated to what extent the signal propagation modes, applicable for a symmetric configuration, remain a suitable representation for signal interpretation when the symmetry is slightly disturbed. This is judged by means of Raleigh-Schrödinger perturbation analysis in comparison to electromagnetic field simulations. Cable designs for the medium-voltage level incorporate measures to confine the electric field in designated regions. Slight asymmetry does not lead to strongly perturbed modes. For low-voltage cables, electric field control is not needed, and the conductors are positioned within short distance of each other. Modes can change significantly upon a relatively small asymmetry. Inhomogeneous heat dissipation, e.g. from a short-circuit current upon a fault, can cause a temporarily asymmetric permittivity distribution over the cable cross section. The feasibility to detect such effect from changing signal velocities of the propagation modes is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical Power & Energy Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.