Abstract

Theoretical and experimental research sponsored by the U.S. Bureau of Mines shows that medium frequency (MF) electromagnetic (EM) signals propagate great distances in an underground environment such as a tunnel or mine. This propagation is enhanced by different mechanisms associated with the geology, and with the existence of metallic conductors in the entryways. In stratified geologies, a transverse electromagnetic (TEM) mode of signal propagation is possible if a low conducting layer is bounded above and below by higher conducting layers. In general, the difference in conductivities must be at least several orders of magnitude. Such geological waveguide conditions often exist in underground mines. Propagation via the waveguide effect is known as the "seam mode" of propagation. Another mode of propagation, the "tunnel mode," exists in underground entries with electrical conductors such as power cables, metal pipes, and phone lines. A monofilar mode of propagation exists when signals are impressed upon conductors and return via the surrounding rock. A bifilar mode of propagation exists when all signals exist only on local conductors. In a given location there is a combination of monofilar and bifilar modes that make possible an interaction between the conductors and a transmitting device in a tunnel or entryway. Signals can be impressed on or received from local conductors via magnetic dipole antennas (loops) or line couplers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call