Abstract

AbstractThis work draws attention to the optimal hierarchical nanostructure morphology and the morphological characteristics that lead to a rational design of heterogeneous nanocatalysts, especially for reactions that exhibit sluggish kinetics. A simplified methanol oxidation on two types of hierarchical nanostructures, external and internal, is reported. A complex system of asymmetric geometries was simplified by mapping 3 D geometries into 2 D models by using a mass transport approach. The macropore size was the most comprehensive characteristic to evaluate the specific activity and current density of hierarchical nanostructures. The optimal current densities for both types of nanostructures were achieved in macropore size ranges of 3.2–4.5 and 1.9–3.2 μm, respectively. The optimal mass activity of the internal nanostructures was achieved in the porosity range of 40–50 %, whereas that of the external hierarchical nanostructures was achieved at high porosity values. In comparison to internal hierarchical nanostructures, external hierarchical nanostructures tend to be cost‐effective catalysts that have a high catalytic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.