Abstract

We report a highly selective and sensitive electrochemical sensor for the determination of nitrofurazone (NZ) based on sulfur-doped graphitic carbon nitride with copper tungstate hollow spheres (Sg–C3N4/CuWO4). Here, a Sg–C3N4/CuWO4 composite was synthesized by a facile ultrasonic method. The physicochemical properties of the composite were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). Then, the surface morphology of the composite material was investigated by field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM). Moreover, the electrochemical activity of the as-synthesized composite material was initially tested using electrochemical impedance spectroscopy (EIS). The electroanalytical techniques namely cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were carried out for the electrochemical studies. The proposed sensor exhibits lower LOD and good sensitivity of about 3 nM and 1.24 μAμM−1 cm−2 to NZ detection. In addition, the Sg–C3N4/CuWO4 modified electrode showed excellent repeatability, reproducibility, long-term storage stability and excellent selectivity. The developed sensor was successfully applied for the determination of NZ in human urine and serum samples and achieved good recovery results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.