Abstract

Ti-rich Ti–Si–B alloys can be considered for structural applications at high temperatures (max. 700 °C), however, phase equilibria data is reported only for T = 1250 °C. Thus, in this work the phase stability of this system has been evaluated at 700 °C. In order to attain equilibrium conditions in shorter time, rapid solidified samples have been prepared and carefully characterized. The microstructural characterization of the produced materials were based on X-ray diffraction (XRD), scanning electron microscopy (SEM-BSE), high resolution transmission electron microscopy (HRTEM), High Temperature X-ray diffraction with Synchrotron radiation (XRDSR) and Differential Scanning Calorimetry (DSC). Amorphous and amorphous with embedded nanocrystals have been observed after rapid solidification from specific alloy compositions. The values of the crystallization temperature (Tx) of the alloys were in the 509–647 °C temperature range. After Differential Scanning Calorimetry and High Temperature X-ray Diffraction with Synchrotron radiation, the alloys showed crystalline and basically formed by two or three of the following phases: αTi, Ti 6Si 2B; Ti 5Si 3; Ti 3Si and TiB. It has been shown the stability of the Ti 3Si and Ti 6Si 2B phases at 700 °C and the proposition of an isothermal section at this temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.