Abstract

With the continuous control of anthropogenic emissions, China's air quality has improved significantly in recent years. Given this background, research on how the short-term exposure risks caused by air pollution in China have changed is insufficient. This study utilized hourly concentration data from ground observation stations and the official air quality guidelines of the Ministry of Ecology and Environment of China and the World Health Organization as standards to systematically investigate the spatiotemporal characteristics and short-term exposure risks of air pollution in China from 2015 to 2022. The results indicate that various atmospheric pollutants except for ozone showed a decreasing trend yearly. Nationwide, both single pollutant air pollution days (SAPDs) and multiple pollutant air pollution days (MAPDs) showed varying degrees of reduction within 15 and 25 days, respectively. SAPD was dominated mainly by excessive PM2.5 and PM10 pollutants, while MAPD was dominated mainly by excessive pollutant combinations, including PM2.5 + PM10, CO + PM2.5 + PM10, and SO2 + PM2.5 + PM10. As the concentration of atmospheric pollutants decreased, the total excess risk (ER) decreased yearly from 2015 to 2022, but there were significant regional differences. Now, the ER is less than 0.25% in southern China, in the range of 0.25%-0.5% in the North China Plain and some cities in the northeast, and higher than 1% in the northwest. Particulate matter is currently the primary pollutant posing short-term exposure risk in China, especially due to the impact of sandstorm weather. This study indicates that China's atmospheric cleaning action is significantly beneficial for reducing health risks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call