Abstract

Two distinct N-deoxyribosyltransferases of Lactobacillus leichmannii, designated as DRTase I and DRTase II, were separated and purified almost to homogeneity by one-step affinity chromatography. DRTase I is distinguished by specifically catalyzing the direct transfer of 2-deoxyribosyl residues from purine deoxyribonucleosides to free purine bases, whereas DRTase II has a rather broad substrate specificity and is able to transfer the deoxyribosyl moiety between pyrimidines and between purines and pyrimidines. Furthermore, in addition to the different substrate spectrum, we clearly differentiated the two enzymes by comparing their varying temperature/activity and pH/activity profiles, their kinetic constants, their behaviour in Western blot analysis, and their N-terminal amino acid sequences. Denaturing and non-denaturing DISK-PAGE revealed strong evidence that both intact enzymes consist of hexamers with subunit molecular weights of approximately 20,000 for DRTase I and 18,000 for DRTase II.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.