Abstract

Abstract The objective of this work was to provide a rapid and nondestructive imaging method for evaluating the hygroscopic behavior of thermally modified lignocellulosic materials (softwood and hardwood). The difference in the hygroscopic behavior was explained by moisture content (MC) mapping results and molecular association characteristics of absorbed water (i.e. weakly, moderately, and strongly hydrogen-bonded water molecules) with wood at various relative humidities (RH). To achieve this goal, near-infrared (NIR) spectral images in the wavelength range 1816–2130 nm (covering the combination of stretching and deformation vibrations for OH) were used to visualize MC distributions over the surface of Japanese cedar and European beech samples which had been thermally treated at different temperatures. A curve fitting method was utilized to explore changes in water-wood structure characteristics based on shifts to longer wavelength in spectral signals caused by increasing MC. The curve fitting results support the recent nuclear magnetic resonance (NMR) studies that different bound water stabilities may pool in different compartments of the wood cell wall. Furthermore, water was firmly bound to wood at low RHs and H-bonds gained mobility as the number of absorbed molecules increased. It is concluded that NIR hyperspectral imaging also has the potential to be a complementary methodology for studying the transient changes of wood-water interactions before equilibrium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call