Abstract

Alongside the effort underway to build quantum computers, it is important to better understand which classes of problems they will find easy and which others even they will find intractable. We study random ensembles of the QMA$_1$-complete quantum satisfiability (QSAT) problem introduced by Bravyi \cite{Bravyi:2006p4315}. QSAT appropriately generalizes the NP-complete classical satisfiability (SAT) problem. We show that, as the density of clauses/projectors is varied, the ensembles exhibit quantum phase transitions between phases that are satisfiable and unsatisfiable. Remarkably, almost all instances of QSAT for \emph{any} hypergraph exhibit the same dimension of the satisfying manifold. This establishes the QSAT decision problem as equivalent to a, potentially new, graph theoretic problem and that the hardest typical instances are likely to be localized in a bounded range of clause density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.