Abstract
During the 20 th century there has been an incredible progress in solving theoretically hard problems in practice. One of the most prominent examples is the DPLL algorithm and its derivatives to solve the Boolean satisfiability problem, which can handle instances with millions of variables and clauses in reasonable time, notwithstanding the theoretical difficulty of solving the problem. Despite this progress, there are classes of problems that contain especially hard instances, which have remained open for decades despite their relative small size. One such class is the class of extremal problems, which typically involve finding a combinatorial object under some constraints (e.g, the search for Ramsey numbers). In recent years, a number of specialized methods have emerged to tackle extremal problems. Most of these methods are applied to a specific problem, despite the fact there is a great deal in common between different problems. Following a meticulous examination of these methods, we would like to extend them to handle general extremal problems. Further more, we would like to offer ways to exploit the general structure of extremal problems in order to develop constraints and symmetry breaking techniques which will, hopefully, improve existing tools. The latter point is of immense importance in the context of extremal problems, which often hamper existing tools when there is a great deal of symmetry in the search space, or when not enough is known of the problem structure. For example, if a graph is a solution to a problem instance, in many cases any isomorphic graph will also be a solution. In such cases, existing methods can usually be applied only if the model excludes symmetries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.