Abstract

We propose a novel approach to imaging that is not based on traditional optical imaging architecture. With the new approach, the image is reconstructed and visualized from random projections of the input object. The random projections are implemented within a single exposure by using a random phase mask which can be placed on a lens. For objects that have sparse representation in some known domain (e.g., Fourier or wavelet), the novel imaging systems have larger effective space - bandwidth product than conventional imaging systems. This implies, for example, that more object pixels may be reconstructed and visualized than the number of pixels of the image sensor. We present simulation results on the utility of the new approach. The proposed approach can have broad applications in efficient imaging capture, visualization, and display given ever increasing demands for larger and higher resolution images, faster image communications, and multidimensional image communications such as 3-D TV and display.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.