Abstract

Demands for an imaging system which has high space-bandwidth product (SBP) are increasing in modern biomedical research as the amount of information to be dealt with is increasing. However, conventional microscopy has a limited SBP of about 10 mega pixels, and as such if a user wants an image in high resolution, the field of view (FOV) of the image is reduced, or if a wide FOV is necessary, the user needs to give up the resolution of image. A common way of overcoming this SBP limit in the conventional microscopy is to use mechanical moving stages and scan through wide sample area, however, it is time consuming to image large area using a high numerical aperture (NA) objective lens. This thesis presents compact imaging systems based on Fourier ptychographic microscopy for biomedical applications which are able to increase SBP without having any mechanical moving parts: one imaging system for an incubator embedded imaging system to be used in in-vitro cell culture monitoring, and the other for a high throughput 96 well plate imaging system for fast drug screening.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.