Abstract

We address the important practical problem of how to select the random effects component in a linear mixed model. A hierarchical Bayesian model is used to identify any random effect with zero variance. The proposed approach reparameterizes the mixed model so that functions of the covariance parameters of the random effects distribution are incorporated as regression coefficients on standard normal latent variables. We allow random effects to effectively drop out of the model by choosing mixture priors with point mass at zero for the random effects variances. Due to the reparameterization, the model enjoys a conditionally linear structure that facilitates the use of normal conjugate priors. We demonstrate that posterior computation can proceed via a simple and efficient Markov chain Monte Carlo algorithm. The methods are illustrated using simulated data and real data from a study relating prenatal exposure to polychlorinated biphenyls and psychomotor development of children.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.