Abstract
Linear mixed effects models are highly flexible in handling a broad range of data types and are therefore widely used in applications. A key part in the analysis of data is model selection, which often aims to choose a parsimonious model with other desirable properties from a possibly very large set of candidate statistical models. Over the last 5–10 years the literature on model selection in linear mixed models has grown extremely rapidly. The problem is much more complicated than in linear regression because selection on the covariance structure is not straightforward due to computational issues and boundary problems arising from positive semidefinite constraints on covariance matrices. To obtain a better understanding of the available methods, their properties and the relationships between them, we review a large body of literature on linear mixed model selection. We arrange, implement, discuss and compare model selection methods based on four major approaches: information criteria such as AIC or BIC, shrinkage methods based on penalized loss functions such as LASSO, the Fence procedure and Bayesian techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.