Abstract
Adulteration of milk for commercial gain is acknowledged as a serious issue facing the dairy industry. Several analytical techniques can be used to detect adulteration but they often require time-consuming sample preparation, expensive laboratory equipment, and highly skilled personnel. Here we show that Raman spectroscopy provides a simple, selective, and sensitive method for screening milk, specifically for small nitrogen-rich compounds, such as melamine, urea, ammonium sulfate, dicyandiamide, and for sucrose. Univariate and multivariate statistical methods were used to determine limits of detection and quantification from Raman spectra of milk spiked with 50 to 1,000mg/L of the N-rich compounds and 0.25 to 4% sucrose. Partial least squares (PLS) calibration provided limit of detection minimum thresholds <200mg/L (0.02%) for the 4 N-rich compounds and <0.8% for sucrose, without the need for surface-enhanced Raman spectroscopy. The results show high reproducibility (7% residual standard deviation) and 100% efficiency for screening of milk for these adulterants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.