Abstract

A portable Raman system with an immersion fiber optic probe was assessed for point-of-collection screening for the presence of adulterants in liquid milk. N-rich adulterants and sucrose were measured in this proof-of-concept demonstration. Reproducibility, limit of detection range and other figures of merit such as specificity, sensitivity, ratio of predicted to standard deviation, standard error of prediction and root mean squared error for cross validation were determined from partial least squares (PLS) and partial least squares with discriminant analysis (PLS-DA) calibrations of milk mixtures containing 50-1000 ppm (parts per million) of melamine, ammonium sulphate, Dicyandiamide, urea and sucrose. The spectra were recorded by immersing the fiber optic probe directly in the milk solutions. Despite the high scattering background which was easily and reliably estimated and subtracted, the reproducibility for four N-rich compounds averaged to 11% residual standard deviation (RSD) and to 5% RSD for sucrose. PLS calibration models predicted the concentrations of separate validation sets with standard errors of prediction of between 44 and 76 ppm for the four N-rich compounds and 0.17% for sucrose. The sensitivity and specificity of the PLS-DA calibration were 92% and 89%, respectively. The study shows promise for use of portable mini Raman systems for routine rapid point-of-collection screening of liquid milk for the presence of adulterants, without the need for sample preparation or addition of chemicals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call