Abstract

Point-of-care diagnostics are of interest in the medical, security and food industry, the latter particularly for screening food adulterated for economic gain. Milk adulteration continues to be a major problem worldwide and different methods to detect fraudulent additives have been investigated for over a century. Laboratory based methods are limited in their application to point-of-collection diagnosis and also require expensive instrumentation, chemicals and skilled technicians. This has encouraged exploration of spectroscopic methods as more rapid and inexpensive alternatives. Raman spectroscopy has excellent potential for screening of milk because of the rich complexity inherent in its signals. The rapid advances in photonic technologies and fabrication methods are enabling increasingly sensitive portable mini-Raman systems to be placed on the market that are both affordable and feasible for both point-of-care and point-of-collection applications. We have developed a powerful spectroscopic method for rapidly screening liquid milk for sucrose and four nitrogen-rich adulterants (dicyandiamide (DCD), ammonium sulphate, melamine, urea), using a combined system: a small, portable Raman spectrometer with focusing fibre optic probe and optimized reflective focusing wells, simply fabricated in aluminium. The reliable sample presentation of this system enabled high reproducibility of 8% RSD (residual standard deviation) within four minutes. Limit of detection intervals for PLS calibrations ranged between 140 - 520 ppm for the four N-rich compounds and between 0.7 - 3.6 % for sucrose. The portability of the system and reliability and reproducibility of this technique opens opportunities for general, reagentless adulteration screening of biological fluids as well as milk, at point-of-collection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.