Abstract

The resonant Raman spectra of (n, m) semiconducting single-walled carbon nanotubes, unambiguously identified from their electron diffraction patterns, have been measured. The diameter dependence of the frequency of the tangential modes with A symmetry has been obtained in the diameter range from 1.4 to 2.5 nm. The comparison between the excitation energies and the calculated transition energies allowed us to determine precisely the values of the Es33 and Es44 transition energies. Finally, in the debate concerning the dominant process at the origin of the first-order Raman scattering in single-walled carbon nanotubes (single resonance process or double resonance process), our results are well understood in the framework of a single resonance process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.