Abstract

Copper-mediated 11C-cyanation reactions have enabled the synthesis of PET radiotracers from a range of readily available precursors and avoid the need to use more toxic Pd catalysts. In this work we adapt our recently developed 11C-cyanation of arylpinacolboronate (BPin) esters for the cGMP synthesis of [11C]LY2795050, a selective antagonist radiotracer for the kappa opioid receptor (KOR). [11C]LY2795050 was synthesized in 6 ± 1% noncorrected radiochemical yield (based on [11C]HCN, n = 3) using an automated synthesis module. Quality control testing confirmed the suitability of doses for preclinical and clinical PET imaging (radiochemical purity >99%; specific activity >900 mCi/μmol; residual Cu < 0.1 μg/mL). PET imaging was conducted in rodent and nonhuman primates, showing good brain uptake of [11C]LY2795050 and the expected distribution of KOR. Analogous imaging with [11C]carfentanil (a selective mu opioid receptor (MOR) radiotracer) revealed the anticipated regional differences in MOR and KOR distribution in the primate brain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call