Abstract
A systematic investigation of the electrical characteristics of β-Ga2O3 Schottky barrier diodes (SBDs) has been conducted under high-dose 60Co gamma radiation, with total cumulative doses reaching up to 5 Mrad (Si). Initial exposure of the diodes to 1 Mrad resulted in a significant decrease in on-current and an increase in on-resistance compared to the pre-radiation condition, likely due to the generation of radiation-induced deep-level acceptor traps. However, upon exposure to higher gamma radiation doses of 3 and 5 Mrad, a partial recovery of the device performance occurred, attributed to a radiation annealing effect. Capacitance–voltage (C–V) measurements showed a decrease in net carrier concentration in the β-Ga2O3 drift layer, from ∼3.20 × 1016 to ∼3.05 × 1016 cm−3, after 5 Mrad irradiation. Temperature-dependent I–V characteristics showed that 5 Mrad irradiation leads to a reduction in both forward and reverse currents across all investigated temperatures ranging from 25 to 250 °C, accompanied by slight increases in on-resistance, ideality factors, and Schottky barrier heights. Additionally, a slight increase in reverse breakdown voltage was observed post-radiation. Overall, β-Ga2O3 SBDs exhibit high resilience to gamma irradiation, with performance degradation mitigated by radiation-induced self-recovery, highlighting its potential for radiation-hardened electronic applications in extreme environment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have