Abstract

Application based technology solution is nowadays preferred to achieve the performance of the cooling system configuration at its best. Therefore, benchmarking is an essential criterion which would add value to the optimum system design for various applications. In this study, a case study is carried out for a Milk Bar (small supermarket) to evaluate the potential of R744 cooling system for the similar cooling demand and tropical conditions. Field data collected during a particular time and temperature zone is further used to develop a yearly round performance of the HFC plug-in cabinets for MT and LT applications. The data is further used to develop a centralized R744 booster system that would meet the similar cooling load and demand of all the cabinets in the shop. Based on the cooling loads for the HFC unit, the yearly performance of the R774 booster system is calculated and compared to the existing plug-in solution. It is observed that the yearly electric energy consumption for the R744 centralized refrigeration system is 3.3 M W·h, 24% lower than with the existing solution based on HFCs. Moreover, the economic prospective of the R744 is further discussed to alternative material for the components and centralized unit structure which could empower the system with more reliability and an effective substitute to the synthetic technology for smaller supermarkets. This article is a translation of the article by Singh S, Pardiñas ÁÁ, Hafner A, Schlemminger C, Banasiak K. R744 Refrigeration Solution for Small Supermarkets. In: Proceedings of the 9th IIR Conference on the Ammonia and CO2 Refrigeration Technologies. Ohrid: IIF/IIR, 2021. DOI: 10.18462/iir.nh3-co2.2021.0030 Published with the permission of the copyright holder.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.