Abstract

This paper shows experimental results about R1234yf condensation inside a microfin tube with an inner diameter at the fin tip of 3.4 mm. R1234yf is a new environmentally friendly refrigerant, with a Global Warming Potential lower than 1, therefore it matches the new environmental laws. Experimental tests are carried out for mass velocities from 100 to 1000 kg m−2 s−1, vapor qualities from 0.95 to 0.2, at saturation temperature of 30 °C and 40 °C. The experimental results show that heat transfer coefficient increases when both mass velocity and vapor quality increase. Frictional pressure gradient increases with mass velocity at constant vapor quality, whereas at constant mass velocity it increases with vapor quality up to a maximum, after which it slightly decreases. The experimental heat transfer coefficient and pressure drop are also compared against the values predicted by empirical correlations available in the open literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.