Abstract

Scroll compressor with short scroll profile length shows great potential in electric vehicles for its compact structure and better reliability, while shorter scroll profile results in less compression time and under-compression in most cases. To investigate the influence of discharge port structure on compressor performance, a three-dimensional transient model of scroll compressor for electric vehicle is established. The theoretical and experimental results exhibit good consistency within a deviation of 9.5 %. With this validated model, the effects of discharge port size and shape on compressor performance are studied respectively. When the circular discharge port diameter increases from 5.2 mm to 9.0 mm, the power consumption and discharge temperature can be reduced respectively by 5.82 % and 5.29 %. The discharge mass flow rate can be promoted by 1.09 %. The discharge pressure fluctuation and imbalance between the upside and downside chambers enhanced obviously. To further improve the discharge flow characteristics, different discharge port shapes were employed including waist-shaped, arc-shaped and composite-shaped port. Compared with 5.2 mm circular port, the power consumption with composite-shaped port reduces by 5.81 % and mass flow grows by 1.26 %. Results indicated changes in discharge port structure parameters have greater influence on power consumption rather than mass flow rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.