Abstract

While multiuser scheduling strategies have been intensively studied in the context of OFDMA downlink recently, the resulting throughput and delay performance affecting strongly end-to-end performance of wireless communication systems can still be evaluated by simulations only. In this paper we approach this problem and consider bounds for delay and queue backlog for a large class of scheduling policies. Adopting a general state space Markov chain model the concept of policy-specific throughput regions is introduced. Then, under the regime of the policy, a recursive formula for calculating all polynomial moments of the queue backlog is derived. Moreover, it is shown that even exponential decay of the tail distribution can be obtained under proper circumstances. Based on these results, upper bounds on the buffer overflow probability are derived giving insights for practical buffer dimensioning problems in UMTS LTE systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.