Abstract
This paper discusses some connections between adaptive Monte Carlo algorithms and general state space Markov chains. Adaptive algorithms are iterative methods in which previously generated samples are used to construct a more efficient sampling distribution at the current iteration. In this paper, we describe two such adaptive algorithms, one arising in a finite-horizon computation of expected reward and the other arising in the context of solving eigenvalue problems. We then discuss the connection between these adaptive algorithms and general state space Markov chain theory, and offer some insights into some of the technical difficulties that arise in trying to apply the known theory for general state space chains to such adaptive algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.