Abstract

Passage times in colored stochastic Petri nets correspond to delays in discrete-event stochastic systems. Formal definition of a sequence of passage times in a colored stochastic Petri net is in terms of the underlying general state space Markov chain of the marking process. Using symmetry of the net with respect to color, we provide conditions under which a sequence of passage times is a regenerative process in discrete time with finite cycle-length moments. The regenerative property implies time-average convergence, convergence in distribution, and a central limit theorem for sequences of passage times. It follows that strongly consistent point estimates and asymptotic confidence intervals for general characteristics of passage times can be obtained by simulating a finite portion of a single sample path of the underlying general state space Markov chain. Using regenerative structure of the marking process and a version of Little's Law given by Glynn and Whitt, we also obtain conditions under which a seq...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.