Abstract
We present a calculation of the modulation in the Local Density Of electronic States (LDOS) caused by an impurity in graphene in the presence of external magnetic field. We focus on the spatial Fourier Transform (FT) of this modulation around the impurity. The FT due to the low energy quasiparticles are found to be nonzero over the reciprocal lattice corresponding to graphene. At these lattice spots the FT exhibits well-defined features at wavevectors that are multiples of the inverse cyclotron orbit diameter (see Figure 2) and is cut off at the wavevector corresponding to the energy of observation. Scanning Tunneling Spectroscopy (STS) on graphene and the energy-resolved FT fingerprint obtained therefrom may be used to observe the quasiparticle interference of Dirac particles in graphene in the presence of magnetic field.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have