Abstract

AbstractIntensity fluctuations of laser light scattered from filamentous viruses Pf1 [length L (Å) × diameter d (Å) = 20,000 × 90], M13 (9000 × 90), potato virus X (5150 × 130), and tobacco mosaic virus (3000 × 180) in sucrose density gradients were measured with a photon correlation spectrometer over a range of scattering angles from 15° to 120°. The experimental data can be approximated by two exponential decays, “slow” and “fast.” The slow decay rate constant t corresponds to the translational diffusion D of the virus, i.e., t = K2D, where K is the magnitude of the scattering vector. The amplitude of the slow component, i.e., translational diffusion, remains greater than that of the fast component, even at high KL. The fast decay rate constant t is also proportional to K2 for viruses such as Pf1, M13, and even potato virus X. In the companion paper, we shall attribute the amplitude enhancement of the translational diffusion to the coupling of its anisotropy to the rotational diffusion modes. In order to explain the excessive decay rates in the fast component, we need to consider the bending mode of rodlike viruses, especially in the longer viruses such as M13 and Pf1, in addition to the usually expected rotational diffusion modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call