Abstract

Hydrogels are notable for their outstanding absorbent qualities, satisfactory compatibility with biological systems, ability to degrade, and inherent safety, all of which contribute to their high demand in the field of biomedicine. This study focuses on the fabrication of hydrogels using environmentally friendly cellulosic material. Cellulose hydrogel beads were prepared by physical cross-linking in a NaOH/urea medium. Furthermore, nano polydopamine was integrated into the hydrogel matrix as functional polymers and α-mangostin was employed as an active pharmaceutical ingredient. The physicochemical properties were comprehensively analyzed using Fourier-transform infrared spectrometer, 13C cross-polarization/magic angle spinning nuclear magnetic resonance, thermogravimetric analysis, and scanning electron microscope. The drug delivery properties, including water content, swelling ratio, and drug release profiles, were evaluated. In vitro cytotoxicity against MC3T3-E1 cells was assessed using sulforhodamine B staining. All test hydrogels exhibited inhibitory activity against the growth of MC3T3-E1 cells. These results indicated the potential use of these hydrogels as a drug delivery carrier for α-mangostin in the treatment of ankylosing spondylitis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.