Abstract
We present ab initio theory and efficient algorithms for computing model Hamiltonians of excited-state dynamics in the quasi-diabatic representation. The method is based on a recently developed multiconfiguration electronic structure method, called the active space decomposition method (ASD), in which quasi-diabatic basis states are constructed from physical fragment states. An efficient tree-based algorithm is presented for computing and reusing intermediate tensors appearing in the ASD model. Parallel scalability and wall times are reported to attest the efficiency of our program. Applications to electron, hole, and triplet energy transfers in molecular dimers are presented, demonstrating its versatility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.