Abstract

We develop a nonadiabatic dynamics propagation scheme that allows interfacing diabatic quantum dynamics methods with commonly used adiabatic electronic structure calculations. This scheme uses adiabatic states as the quasi-diabatic (QD) states during a short-time quantum dynamics propagation. At every dynamical propagation step, these QD states are updated based on a new set of adiabatic basis. Using the partial linearized density matrix (PLDM) path-integral method as one specific example for diabatic dynamics approaches, we demonstrate the accuracy of the QD scheme with a wide range of model nonadiabatic systems as well as the on-the-fly propagations with density functional tight-binding (DFTB) calculations. This study opens the possibility to combine accurate diabatic quantum dynamics methods with adiabatic electronic structure calculations for nonadiabatic dynamics propagations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.